Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 273: 107385, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244324

RESUMEN

The radiocesium (137Cs) activity concentration in stemflow, which is an element of the 137Cs cycle in the forest, is determined by the supply of 137Cs from the outer bark and leaves. Long-term monitoring data of deciduous broad-leaved trees since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident have shown the 137Cs activity concentration in the outer bark decreasing exponentially, while that in the leaves has remained nearly constant. Therefore, it is expected that the contribution of the outer bark to 137Cs in stemflow eventually becomes smaller than that of leaves over time. We hypothesized that as of 2022-2023 (i.e., more than 10 years after the FDNPP accident), the main source of 137Cs in the stemflow of deciduous broad-leaved trees is mainly leaching from leaves. We tested this hypothesis by conducting two surveys in the autumn of 2022 (September-October) and early summer of 2023 (May-June) in Kawauchi Village, Fukushima Prefecture. Samples consisted of stemflow, leaves, and outer bark from a total of 10 deciduous broad-leaved trees (three konara oaks, three mizunara oaks, two Japanese chestnuts, and two cherry blossoms). Our statistical analyses (correlation, linear and multilinear regression analyses) showed that the 137Cs activity concentrations in stemflow were significantly positively correlated to those in leaves, with no positive correlation detected with the outer bark, suggesting that at the time of the survey, the 137Cs activity concentration in stemflow was mainly influenced by the 137Cs activity concentration in leaves. In addition, we propose a method for estimating the stemflow 137Cs activity concentration in konara oak using data from leaves. Although the method's prediction accuracy is low from 2011 to 2013, it is able to estimate the stemflow 137Cs activity concentration in konara oak. Thus, it can help determine one of the model parameters of 137Cs dynamics within deciduous broad-leaved forests.


Asunto(s)
Accidente Nuclear de Fukushima , Quercus , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Árboles , Proyectos Piloto , Corteza de la Planta/química , Monitoreo de Radiación/métodos , Bosques , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Cesio/análisis , Japón
2.
J Environ Radioact ; 273: 107390, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295586

RESUMEN

Removal of litter-associated 137Cs from the forest floor (litter removal) can reduce the 137Cs uptake by plants; however, the proposed effective period for litter removal was 1-2 years after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. This is because the 137Cs in forest soil migrates rapidly from the litter to surface mineral soil layers in Japanese forests, and thus the effectiveness of litter removal will quickly become limited. However, it is unknown whether this approach can be applied to forests whose vertical migration of 137Cs in the forest soil is relatively slow. Herein, we compared the 137Cs activity concentration in the inner bark of the Japanese cedar (Cryptomeria japonica) between litter removal (conducted in September and October 2016, 5 years after the accident) and in control areas in Kawauchi Village, Fukushima Prefecture, where the vertical migration of 137Cs was relatively slow from the litter to surface mineral soil layers. Air dose rates (ambient dose equivalent) in the litter removal area were significantly lower than those in the control area in 2022, and the 137Cs inventory in the forest soil in litter removal area also tended to be lower than that in the control area. In Japanese cedars with similar levels of outer bark contamination, the 137Cs activity concentration in the inner bark in the litter removal area was significantly lower than that in the control area, and consistent trends were also found when comparing the 137Cs activity concentration in the leaves of Stephanandra incisa and Wisteria floribunda obtained from the same forest. Thus, the litter removal 5 years after the FDNPP accident may have reduced the 137Cs uptake in Japanese cedar in an evergreen coniferous forest where the vertical migration of 137Cs is relatively slow in the forest soil.


Asunto(s)
Cryptomeria , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Contaminantes Radiactivos del Suelo/análisis , Bosques , Radioisótopos de Cesio/análisis , Suelo , Minerales , Japón
3.
Sci Rep ; 13(1): 9144, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277410

RESUMEN

Radiocesium (137Cs) released in the Fukushima Dai-ichi Nuclear Power Plant accident is still cycling in the forest ecosystem. We examined the mobility of 137Cs in the external parts-leaves/needles, branches, and bark-of the two major tree species in Fukushima, Japanese cedar (Cryptomeria japonica) and konara oak (Quercus serrata). This variable mobility will likely lead to spatial heterogeneity of 137Cs and difficulty in predicting its dynamics for decades. We conducted leaching experiments on these samples by using ultrapure water and ammonium acetate. In Japanese cedar, the 137Cs percentage leached from current-year needles was 26-45% (ultrapure water) and 27-60% (ammonium acetate)-similar to those from old needles and branches. In konara oak, the 137Cs percentage leached from leaves was 47-72% (ultrapure water) and 70-100% (ammonium acetate)-comparable to those from current-year and old branches. Relatively poor 137Cs mobility was observed in the outer bark of Japanese cedar and in organic layer samples from both species. Comparison of the results from corresponding parts revealed greater 137Cs mobility in konara oak than in Japanese cedar. We suggest that more active cycling of 137Cs occurs in konara oak.


Asunto(s)
Cryptomeria , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Árboles , Ecosistema , Bosques , Radioisótopos de Cesio/análisis , Contaminantes Radiactivos del Suelo/análisis , Japón
4.
J Environ Radioact ; 251-252: 106967, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35930867

RESUMEN

To elucidate interannual changes in the vertical distribution of 137Cs in forest ecosystems contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, we investigated 137Cs inventories in forest soils (both organic and mineral soil horizons) at 10 sampling plots with different 137Cs deposition levels and dominant species for up to 10 years after the accident. We examined the temporal variation of the 137Cs inventories by depth with exponential regression models (assuming that the transition and partitioning of 137Cs are still active) and exponential offset regression models (assuming a shift to a stable 137Cs distribution, defined as the "quasi-equilibrium steady-state" in the Chernobyl accident). In the organic horizon, the 137Cs inventories were exponentially decreasing, and it might take more time to converge in the quasi-equilibrium steady-state at most plots. In the mineral soil horizon, most of 137Cs was found in the surface layer of the mineral soil horizon (0-5 cm). In this layer, the inventories first increased and then become relatively constant, and the exponential offset model was selected at most plots, suggesting entry into the quasi-equilibrium steady-state over the observation period. Although we also observed exponentially increasing trends in a lower layer (5-10 cm) of the mineral soil horizon, there was no clear increasing or decreasing trend of 137Cs inventory in the deeper mineral soil layers (10-15 and 15-20 cm). Our calculation of the relaxation depth and migration center revealed that downward migration of 137Cs is not significant in terms of the overall 137Cs distribution in the mineral soil horizon over 10 years.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Radioisótopos de Cesio/análisis , Ecosistema , Bosques , Japón , Minerales , Suelo , Contaminantes Radiactivos del Suelo/análisis
5.
J Environ Radioact ; 238-239: 106721, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34509097

RESUMEN

Forests cover approximately 70% of the area contaminated by the Fukushima Daiichi Nuclear Power Plant accident in 2011. Following this severe contamination event, radiocaesium (137Cs) is anticipated to circulate within these forest ecosystems for several decades. Since the accident, a number of models have been constructed to evaluate the past and future dynamics of 137Cs in these forests. To explore the performance and uncertainties of these models we conducted a model inter-comparison exercise using Fukushima data. The main scenario addressed an evergreen needleleaf forest (cedar/cypress), which is the most common and commercially important forest type in Japan. We also tested the models with two forest management scenarios (decontamination by removal of soil surface litter and forest regeneration) and, furthermore, a deciduous broadleaf forest (konara oak) scenario as a preliminary modelling study of this type of forest. After appropriate calibration, the models reproduced the observed data reliably and the ranges of calculated trajectories were narrow in the early phase after the fallout. Successful model performances in the early phase were probably attributable to the availability of comprehensive data characterizing radiocaesium partitioning in the early phase. However, the envelope of the calculated model end points enlarged in long-term simulations over 50 years after the fallout. It is essential to continue repetitive verification/validation processes using decadal data for various forest types to improve the models and to update the forecasting capacity of the models.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Radioisótopos de Cesio/análisis , Ecosistema , Bosques , Japón , Contaminantes Radiactivos del Suelo/análisis
6.
J Environ Radioact ; 222: 106369, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32801027

RESUMEN

Several years after the Fukushima Daiichi Nuclear Power Plant accident, the surface mineral soil layer is believed to be the main reservoir of radiocesium (137Cs) in forest ecosystems in Japan. Dissolved 137Cs combines with clay minerals in the soil, and hence, it is not expected to easily infiltrate over time. However, previous studies have indicated that 137Cs derived from the older global fallout migrated deeper than that of the Chernobyl accident, and this cannot be explained by only the dissolved 137Cs vertical migration in the soil. Considering the carbon and nutrient dynamics in the forest floor, the 137Cs transfer process in soil via roots may alter its vertical distribution on a decadal scale. Therefore, in this study, we investigated the 137Cs activity concentrations in both roots and soil matrix, by considering four (0-20 cm) or six (0-30 cm) mineral soil layers taken at every 5 cm at seven study sites dominated by one of the six plant species (three coniferous forests, one deciduous forest, two deciduous forests covered by Sasa, and one bamboo forest) in eastern Japan in 2013. Comparing the results of 137Cs activity concentrations between roots and soil matrix taken at the same soil layer, roots at the surface (0-5 cm) layer often showed lower values than the soil matrix. However, roots deeper than 5 cm had higher activity concentrations than the soil matrix, conversely. The 137Cs inventories ratio of roots to soil matrix are about 1% at the 0-5 and 5-10 cm soil layer, and about 2% at the soil layers deeper than 10 cm. These results suggest that decomposition of root litter little affect the short-term vertical migration of 137Cs in the forest soil. However, it indicates that continuous production and mortality of roots with relatively high 137Cs activity concentrations have an important role for changing the vertical distribution of 137Cs on time scale of decades, particularly at deeper soil layers.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Radioisótopos de Cesio , Ecosistema , Bosques , Japón , Suelo , Contaminantes Radiactivos del Suelo/análisis
7.
J Environ Radioact ; 210: 106001, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31272804

RESUMEN

Since headwater catchments are the source areas of 137Cs for downstream river systems, 137Cs discharge from headwater areas needs to be evaluated. Dissolved form (Dissolved), coarse organic matter (Org), and suspended sediments (SS) were sampled and 137Cs concentrations were measured from June 2011 to November 2016 in four headwater catchments in Yamakiya District, located 35 km northwest of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP). The data up to September 2013 (2.5 y after the accident) have been already published (Iwagami et al., 2017a, b). The data up to November 2016 (5.7 y after the accident) are newly reported in the present paper together with data at a new sampling site. The whole data from June 2011 to November 2016 is discussed. The normalized 137Cs concentrations (137Cs concentrations normalized by the average deposition density of each catchment) in Dissolved, Org, and SS were in the order of 10-6 m2/L, 10-2 m2/kg, and 10-1 m2/kg, respectively, before 2013 and declined to around 10-8 m2/L, 10-4 m2/kg, and 10-2 m2/kg, respectively, in 2016. As a result of the decontamination program, the discharge of SS increased, whereas 137Cs concentrations in SS declined significantly and the total flux of 137Cs decreased. Although the clear effect of land use on decline trend in normalized 137Cs concentrations in Dissolved was not found, more data are necessary for elucidating the relation between them.


Asunto(s)
Accidente Nuclear de Fukushima , Radioisótopos de Cesio , Japón , Plantas de Energía Nuclear , Monitoreo de Radiación , Ríos , Contaminantes Radiactivos del Agua
8.
J Environ Radioact ; 210: 105817, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30236975

RESUMEN

The study investigated temporal changes in the 137Cs concentrations in vegetal and hydrological samples collected from various forests in Yamakiya District, Kawamata Town of Fukushima prefecture over six years following the Fukushima Dai-ichi nuclear power plant accident. Cesium-137 was detected in all forest environmental samples. However, the concentration in most samples decreased exponentially with time. The 137Cs concentrations in throughfall samples exhibited a double-exponential decreasing trend with time. Temporal changes in the 137Cs concentration in vegetal samples and stemflow were approximated by using a single-exponential equation. A comparison of the decline coefficient for the latter observation period (>2 y since the accident) revealed that the declining trend of 137Cs concentrations varied between foliage and the outer barks of the Japanese cedar and Japanese konara oak trees. The 137Cs concentration in cedar needles decreased exponentially while that in konara oak leaves was constant over the last six years. Conversely, the declining trend of 137Cs concentration in the outer bark of konara oak exceeded that of cedar. The results suggested that self-decontamination processes and internal recycling of 137Cs varied among tree species and different tree parts. The results indicated that the leaching of 137Cs in the throughfall in Japanese cedar was dependent on the 137Cs concentration in needles. However, a comparison of 137Cs concentrations in vegetal and hydrological samples from each sampling year showed that the leaching rate decreased with time. Conversely, the 137Cs concentrations in the stemflow were independent of the concentrations in the outer bark. The declining trend of 137Cs concentrations in litterfall (λ: 0.31-0.33 y-1) was similar to that of the mean of new/old needles (λ: 0.26-0.33 y-1) for cedar stands. With respect to the hydrological components, the 137Cs concentration in the stemflow (λ: 0.32-0.33 y-1) decreased at a slightly slower rate than that in the throughfall (λ: 0.36-0.54 y-1) for the cedar forest. The decline coefficients of 137Cs concentration in the aforementioned types of hydrological components slightly exceeded that for the vegetal samples. The results suggest that monitoring of 137Cs concentrations in hydrological components and vegetal samples can aid in further understanding the leaching mechanisms of 137Cs from trees to rainwater.


Asunto(s)
Bosques , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Radioisótopos de Cesio , Japón , Plantas de Energía Nuclear , Contaminantes Radiactivos del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...